Sunday, 10 December 2017

Autoregressive moving average implementation


ARIMA Forecasting com Excel e R Olá Hoje eu vou guiá-lo através de uma introdução ao modelo ARIMA e seus componentes, bem como uma breve explicação do método Box-Jenkins de como os modelos ARIMA são especificados. Por fim, eu criei uma implementação do Excel usando R, que I8217ll mostrar-lhe como configurar e usar. Modelos de média móvel auto-regressiva (ARMA) O modelo de média móvel auto-regressiva é utilizado para modelar e prever processos estáticos estacionários de séries temporais. É a combinação de duas técnicas estatísticas previamente desenvolvidas, os modelos Autoregressive (AR) e Moving Average (MA) e foi originalmente descrito por Peter Whittle em 1951. George E. P. Box e Gwilym Jenkins popularizaram o modelo em 1971, especificando etapas discretas para modelar a identificação, a estimativa e a verificação. Este processo será descrito posteriormente como referência. Iniciamos com a introdução do modelo ARMA pelos seus vários componentes, os modelos AR e MA e apresentamos uma generalização popular do modelo ARMA, ARIMA (Média Movente Integrada Autoregressiva) e previsão e etapas de especificação do modelo. Por último, vou explicar uma implementação do Excel que eu criei e como usá-lo para fazer suas previsões de séries temporais. Modelos Autoregressivos O modelo Autoregressivo é usado para descrever processos aleatórios e processos que variam no tempo e especifica que a variável de saída depende linearmente de seus valores anteriores. O modelo é descrito como: Xt c soma varphii, Xt-i varepsilont Onde varphi1, ldots, varphivarphi são os parâmetros do modelo, C é constante, e varepsilont é um termo de ruído branco. Essencialmente, o que o modelo descreve é ​​para qualquer valor dado X (t). Ele pode ser explicado por funções de seu valor anterior. Para um modelo com um parâmetro, varphi 1. X (t) é explicado por seu valor passado X (t-1) e erro aleatório varepsilont. Para um modelo com mais de um parâmetro, por exemplo varphi 2. X (t) é dado por X (t-1). X (t-2) e varepsilont de erro aleatório. Modelo de Média Móvel O modelo de Média Móvel (MA) é usado freqüentemente para modelar séries temporais univariadas e é definido como: Xt mu varepsilont theta1, varepsilon ldots thetaq, varepsilon mu é a média das séries temporais. Theta1, ldots, thetaq são os parâmetros do modelo. Varepsilont, varepsilon, ldots são os termos de erro de ruído branco. Q é a ordem do modelo de média móvel. O modelo de Média Móvel é uma regressão linear do valor atual da série em comparação com termos varepsilont no período anterior, t. Varepsilon. Por exemplo, um modelo de MA de q 1. X (t) é explicado pelo erro atual varepsilont no mesmo período eo valor do erro passado, varepsilon. Para um modelo de ordem 2 (q 2), X (t) é explicado pelos dois últimos valores de erro, varepsilon e varepsilon. Os termos AR (p) e MA (q) são usados ​​no modelo ARMA, que será agora introduzido. Modelos de média móvel auto-regressivos Modelos de média móvel auto-regressivos utilizam dois polinómios, AR (p) e MA (q) e descrevem um processo estocástico estacionário. Um processo estacionário não muda quando deslocado no tempo ou no espaço, portanto, um processo estacionário tem média e variância constantes. O modelo ARMA é freqüentemente referido em termos de seus polinômios, ARMA (p, q). A notação do modelo é escrita: Xt c varepsilont soma varphi1 X soma thetai varepsilon Selecionar, estimar e verificar o modelo é descrito pelo processo Box-Jenkins. Método Box-Jenkins para Identificação de Modelo O abaixo é mais um esboço do método Box-Jenkins, como o processo real de encontrar esses valores pode ser bastante esmagadora sem um pacote estatístico. A folha Excel incluída nesta página determina automaticamente o modelo mais adequado. O primeiro passo do método Box-Jenkins é a identificação do modelo. O passo inclui a identificação de sazonalidade, diferenciando se necessário e determinando a ordem de p e q traçando as funções de autocorrelação e autocorrelação parcial. Depois que o modelo é identificado, o próximo passo é estimar os parâmetros. A estimação de parâmetros usa pacotes estatísticos e algoritmos de computação para encontrar os melhores parâmetros de ajuste. Uma vez que os parâmetros são escolhidos, o último passo é verificar o modelo. A verificação do modelo é feita testando para ver se o modelo está em conformidade com uma série de tempo univariada estacionária. Deve-se também confirmar que os resíduos são independentes um do outro e exibem média e variância constantes ao longo do tempo, o que pode ser feito executando um teste de Ljung-Box ou novamente traçando a autocorrelação e a autocorrelação parcial dos resíduos. Observe que a primeira etapa envolve verificar a sazonalidade. Se os dados com os quais você está trabalhando contiverem tendências sazonais, você terá de desviar 8222 para tornar os dados estacionários. Este passo diferenciação generaliza o modelo ARMA em um modelo ARIMA, ou Autoregressive Integrated Moving Average, onde 8216Integrated8217 corresponde ao passo de diferenciação. Modelos de Média Móvel Integrados Autoregressivos O modelo ARIMA tem três parâmetros, p, d, q. Para definir o modelo ARMA para incluir o termo de diferenciação, começamos rearranjando o modelo ARMA padrão para separar X (t) látex e látex varepsilont da soma. (1 - soma alfa Li) Xt (1 suma thetai Li) varepsilont Onde L é o operador de latência e alphai. Thetai. Varepsilont são parâmetros auto-regressivos e de média móvel, e os termos de erro, respectivamente. Nós agora fazemos a suposição do primeiro polinômio da função, (1 - sum alphai Li) tem uma raiz unitária da multiplicidade d. Podemos então reescrevê-lo para o seguinte: O modelo ARIMA expressa a fatorização polinomial com pp-d e nos dá: (1-sum phii Li) (1 - L) d Xt (1 suma thetai Li) varepsilont Por fim, generalizamos a Adicionando um termo de deriva, que define o modelo ARIMA como ARIMA (p, d, q) com fratura de deriva. Com o modelo agora definido, podemos ver o modelo ARIMA como duas partes separadas, uma não-estacionária e a outra, estacionária, de sentido amplo (1-soma phii Li) (A distribuição de probabilidade conjunta não muda quando deslocada no tempo ou no espaço). O modelo não-estacionário: O modelo estacionário de sentido amplo: (1-sum phii Li) Yt (1 suma thetai Li) varepsilont As previsões podem agora ser feitas em Yt usando um método de previsão autorregressivo generalizado. Agora que discutimos os modelos ARMA e ARIMA, agora vamos voltar para a forma como podemos usá-los em aplicações práticas para fornecer previsão. Ive construiu uma implementação com o Excel usando R para fazer previsões ARIMA, bem como uma opção para executar Monte Carlo simulação no modelo para determinar a probabilidade das previsões. Implementação do Excel e como usar Antes de usar a folha, você deve baixar R e RExcel do site Statconn. Se você já tem R instalado, você pode apenas baixar RExcel. Se você não tem R instalado, você pode baixar RAndFriends que contém a versão mais recente do R e RExcel. Observe, RExcel só funciona em 32 bits Excel para sua licença não-comercial. Se você tem 64bit Excel instalado, você terá que obter uma licença comercial de Statconn. Recomenda-se fazer o download do RAndFriends, uma vez que facilita a instalação mais rápida e fácil. No entanto, se você já tiver R e quiser instalá-lo manualmente, siga estas etapas. Instalando manualmente o RExcel Para instalar o RExcel e outros pacotes para tornar o R ​​funcionando no Excel, abra R como Administrador clicando com o botão direito do mouse no arquivo. exe. No console R, instale o RExcel digitando as seguintes instruções: Os comandos acima instalam o RExcel em sua máquina. O próximo passo é instalar o rcom, que é outro pacote do Statconn para o pacote RExcel. Para instalar isso, digite os seguintes comandos, que também instalará automaticamente o rscproxy a partir da versão R 2.8.0. Com esses pacotes instalados, você pode passar para a configuração da conexão entre R e Excel. Embora não seja necessário para a instalação, um pacote acessível para download é Rcmdr, desenvolvido por John Fox. Rcmdr cria R menus que podem se tornar menus no Excel. Esse recurso vem por padrão com a instalação do RAndFriends e disponibiliza vários comandos R no Excel. Digite os seguintes comandos em R para instalar Rcmdr. Podemos criar o link para R e Excel. Observação nas versões recentes do RExcel esta conexão é feita com um simples clique duplo do arquivo. bat fornecido ActivateRExcel2010, portanto, você só precisará seguir estas etapas se você instalou R e RExcel manualmente ou se por algum motivo a conexão isnt feita durante A instalação do RAndFriends. Criar a conexão entre R e Excel Abra um novo livro no Excel e navegue até a tela de opções. Clique em Opções e em Add-Ins. Você deve ver uma lista de todos os suplementos ativos e inativos que você tem atualmente. Clique no botão Ir na parte inferior. Na caixa de diálogo Add-Ins, você verá todas as referências de suplemento que você fez. Clique em Procurar. Navegue até a pasta RExcel, geralmente localizada em C: Program FilesRExcelxls ou algo semelhante. Localize o suplemento RExcel. xla e clique nele. O próximo passo é criar uma referência para que macros usando R para funcionar corretamente. Em seu documento Excel, digite Alt F11. Isso abrirá Excels VBA editor. Vá para Tools - gt References e encontre a referência RExcel, RExcelVBAlib. O RExcel agora deve estar pronto para usar Usando a Planilha de Excel Agora que R e RExcel estão devidamente configurados, é hora de fazer alguma previsão Abra a planilha de previsão e clique em Carregar Servidor. Isto é para iniciar o servidor RCom e também carregar as funções necessárias para fazer a previsão. Uma caixa de diálogo será aberta. Selecione o arquivo itall. R incluído com a folha. Este arquivo contém as funções que a ferramenta de previsão usa. A maioria das funções contidas foram desenvolvidas pelo professor Stoffer na Universidade de Pittsburgh. Estendem as capacidades de R e nos fornecem alguns gráficos de diagnóstico úteis junto com nossa saída de previsão. Há também uma função para determinar automaticamente os melhores parâmetros de ajuste do modelo ARIMA. Depois que o servidor for carregado, insira seus dados na coluna Dados. Selecione o intervalo de dados, clique com o botão direito do mouse e selecione Intervalo de nomes. Nomeie o intervalo como Dados. Em seguida, defina a freqüência de seus dados na célula C6. Freqüência refere-se aos períodos de tempo de seus dados. Se for semanal, a freqüência seria 7. Mensal seria 12, enquanto que trimestral seria 4, e assim por diante. Insira os períodos futuros para previsão. Observe que os modelos ARIMA se tornam bastante imprecisos após várias previsões de freqüência sucessivas. Uma boa regra é não exceder 30 passos como qualquer coisa que poderia ser passado não confiável. Isso depende do tamanho de seu conjunto de dados também. Se você tiver dados limitados disponíveis, recomenda-se escolher um número menor de passos à frente. Depois de inserir seus dados, nomeá-los e definir a freqüência desejada e os passos adiante na previsão, clique em Executar. Pode levar algum tempo para a previsão processar. Uma vez concluído, você obterá os valores previstos para o número especificado, o erro padrão dos resultados e dois gráficos. A esquerda apresenta os valores previstos com os dados, enquanto a direita contém diagnósticos úteis com resíduos padronizados, a autocorrelação dos resíduos, um gráfico gg dos resíduos e um gráfico estatístico de Ljung-Box para determinar se o modelo está bem ajustado. Eu não vou entrar em muito detalhes sobre como você olha para um modelo bem equipado, mas no gráfico ACF você não quer qualquer (ou muito) dos pontos de lag cruzamento sobre a linha pontilhada azul. No gráfico gg, quanto mais círculos passam pela linha, mais normalizado e melhor ajustado é o modelo. Para conjuntos de dados maiores isso pode atravessar muitos círculos. Por fim, o teste de Ljung-Box é um artigo em si, porém, quanto mais círculos estiverem acima da linha pontilhada, melhor será o modelo. Se o resultado do diagnóstico não parecer bom, você pode tentar adicionar mais dados ou começar em um ponto diferente mais próximo do intervalo que você deseja prever. Você pode limpar facilmente os resultados gerados clicando nos botões Limpar valores previstos. E isso é ele Atualmente, a coluna da data não faz qualquer outra coisa senão para sua referência, mas não é necessário para a ferramenta. Se eu encontrar tempo, vou voltar e adicionar isso para que o gráfico exibido mostra a hora correta. Você também pode receber um erro ao executar a previsão. Isso geralmente é devido à função que encontra os melhores parâmetros é incapaz de determinar a ordem adequada. Você pode seguir os passos acima para tentar organizar seus dados melhor para que a função funcione. Espero que você obtenha o uso fora da ferramenta Seu me salvou bastante tempo no trabalho, como agora tudo o que tenho a fazer é inserir os dados, carregar o servidor e executá-lo. Espero também que isso mostre como R awesome pode ser, especialmente quando usado com um front-end, como o Excel. O código, a planilha do Excel e o arquivo. bas também estão no GitHub. Os processos de erro de média móvel (ARMA) e outros modelos que envolvem atrasos de termos de erro podem ser estimados usando declarações FIT e simulados ou previstos usando declarações SOLVE. Os modelos ARMA para o processo de erro são freqüentemente usados ​​para modelos com resíduos autocorrelacionados. A macro AR pode ser usada para especificar modelos com processos de erro autorregressivos. A macro MA pode ser usada para especificar modelos com processos de erro de média móvel. Erros Autoregressivos Um modelo com erros autoregressivos de primeira ordem, AR (1), tem a forma enquanto um processo de erro AR (2) tem a forma e assim por diante para processos de ordem superior. Observe que os s são independentes e identicamente distribuídos e têm um valor esperado de 0. Um exemplo de um modelo com um componente AR (2) é e assim por diante para processos de ordem superior. Por exemplo, você pode escrever um modelo de regressão linear simples com MA (2) erros de média móvel, onde MA1 e MA2 são os parâmetros de média móvel. Observe que RESID. Y é automaticamente definido por PROC MODEL como A função ZLAG deve ser usada para modelos MA para truncar a recursividade dos atrasos. Isso garante que os erros defasados ​​começam em zero na fase de latência e não propagam valores faltantes quando as variáveis ​​de período de atraso são perdidos e garantem que os erros futuros sejam zero em vez de faltar durante a simulação ou previsão. Para obter detalhes sobre as funções de atraso, consulte a seção Lag Logic. Este modelo escrito usando a macro MA é o seguinte: Formulário Geral para Modelos ARMA O processo ARMA (p, q) geral tem a seguinte forma Um modelo ARMA (p, q) pode ser especificado da seguinte forma: onde AR i e MA j representam Os parâmetros auto-regressivos e de média móvel para os vários desfasamentos. Você pode usar qualquer nome que você deseja para essas variáveis, e há muitas maneiras equivalentes que a especificação poderia ser escrita. Os processos Vector ARMA também podem ser estimados com PROC MODEL. Por exemplo, um processo AR (1) de duas variáveis ​​para os erros das duas variáveis ​​endógenas Y1 e Y2 pode ser especificado da seguinte forma: Problemas de Convergência com Modelos ARMA Os modelos ARMA podem ser difíceis de estimar. Se as estimativas dos parâmetros não estiverem dentro da faixa apropriada, os termos residuais dos modelos de média móvel crescem exponencialmente. Os resíduos calculados para observações posteriores podem ser muito grandes ou podem transbordar. Isso pode acontecer porque os valores iniciais inadequados foram usados ​​ou porque as iterações se afastaram de valores razoáveis. Cuidado deve ser usado na escolha de valores iniciais para ARMA parâmetros. Os valores iniciais de 0,001 para os parâmetros ARMA geralmente funcionam se o modelo se encaixa bem nos dados eo problema está bem condicionado. Note-se que um modelo MA pode muitas vezes ser aproximado por um modelo AR de alta ordem, e vice-versa. Isso pode resultar em alta colinearidade em modelos ARMA mistos, o que por sua vez pode causar grave mal-condicionamento nos cálculos e instabilidade das estimativas de parâmetros. Se você tiver problemas de convergência ao estimar um modelo com processos de erro ARMA, tente estimar em etapas. Primeiro, use uma instrução FIT para estimar apenas os parâmetros estruturais com os parâmetros ARMA mantidos a zero (ou a estimativas anteriores razoáveis ​​se disponíveis). Em seguida, use outra instrução FIT para estimar somente os parâmetros ARMA, usando os valores dos parâmetros estruturais da primeira execução. Uma vez que os valores dos parâmetros estruturais são susceptíveis de estar perto de suas estimativas finais, as estimativas ARMA parâmetro agora pode convergir. Finalmente, use outra instrução FIT para produzir estimativas simultâneas de todos os parâmetros. Uma vez que os valores iniciais dos parâmetros são agora provavelmente muito próximos de suas estimativas conjuntas finais, as estimativas devem convergir rapidamente se o modelo for apropriado para os dados. AR Condições iniciais Os retornos iniciais dos termos de erro dos modelos AR (p) podem ser modelados de diferentes maneiras. Os métodos de inicialização de erros autorregressivos suportados pelos procedimentos do SASETS são os seguintes: PROCEDIMENTOS MÍNIMOS CONDUTAIS (Procedimentos ARIMA e MODELO) Procedimentos de mínimos quadrados incondicionais (procedimentos AUTOREG, ARIMA e MODELO) Yule-Walker (AUTOREG, ARIMA e MODELO) Procedimento somente) Hildreth-Lu, que exclui as primeiras p observações (somente procedimento MODEL) Consulte o Capítulo 8, O Procedimento AUTOREG, para uma explicação e discussão dos méritos de vários métodos de inicialização AR (p). As inicializações CLS, ULS, ML e HL podem ser realizadas pelo PROC MODEL. Para erros de AR (1), estas inicializações podem ser produzidas como mostrado na Tabela 18.2. Estes métodos são equivalentes em amostras grandes. Tabela 18.2 Inicializações Executadas por PROC MODEL: AR (1) ERROS Os retornos iniciais dos termos de erro dos modelos MA (q) também podem ser modelados de diferentes maneiras. Os seguintes paradigmas de inicialização de erros de média móvel são suportados pelos procedimentos ARIMA e MODELO: mínimos quadrados condicionais mínimos incondicionais O método de mínimos quadrados condicionais para estimar os termos de erro de média móvel não é o ideal porque ignora o problema de inicialização. Isso reduz a eficiência das estimativas, embora permaneçam imparciais. Os resíduos atrasados ​​iniciais, que se estendem antes do início dos dados, são assumidos como 0, o seu valor esperado incondicional. Isso introduz uma diferença entre esses resíduos e os resíduos de mínimos quadrados generalizados para a covariância da média móvel, que, ao contrário do modelo autorregressivo, persiste através do conjunto de dados. Normalmente, esta diferença converge rapidamente para 0, mas para processos de média móvel quase não-reversíveis a convergência é bastante lenta. Para minimizar este problema, você deve ter abundância de dados, e as estimativas de parâmetros de média móvel devem estar bem dentro do intervalo de inversibilidade. Este problema pode ser corrigido à custa de escrever um programa mais complexo. As estimativas de mínimos quadrados incondicionais para o processo MA (1) podem ser produzidas especificando o modelo da seguinte maneira: Erros de média móvel podem ser difíceis de estimar. Você deve considerar usar uma aproximação AR (p) para o processo de média móvel. Um processo de média móvel geralmente pode ser bem aproximado por um processo autorregressivo se os dados não tiverem sido suavizados ou diferenciados. A Macro AR A macro AR do SAS gera instruções de programação para MODELO PROC para modelos autorregressivos. A macro AR é parte do software SASETS e nenhuma opção especial precisa ser definida para usar a macro. O processo autorregressivo pode ser aplicado aos erros de equações estruturais ou às próprias séries endógenas. A macro AR pode ser usada para os seguintes tipos de auto-regressão: auto-regressão vetorial irrestrita autoregressão vetorial restrita Autoregressão Univariada Para modelar o termo de erro de uma equação como um processo autorregressivo, use a seguinte instrução após a equação: Por exemplo, suponha que Y seja a Linear de X1, X2 e um erro de AR (2). Você escreveria este modelo da seguinte maneira: As chamadas para AR devem vir depois de todas as equações às quais o processo se aplica. A invocação de macro anterior, AR (y, 2), produz as instruções mostradas na saída LIST na Figura 18.58. Figura 18.58 Saída de Opção LIST para um Modelo AR (2) As variáveis ​​prefixadas PRED são variáveis ​​de programa temporárias usadas para que os atrasos dos resíduos sejam os resíduos corretos e não os redefinidos por esta equação. Observe que isso é equivalente às instruções explicitamente escritas na seção Formulário Geral para Modelos ARMA. Você também pode restringir os parâmetros autorregressivos a zero em intervalos selecionados. Por exemplo, se você quisesse parâmetros autorregressivos nos retornos 1, 12 e 13, você pode usar as seguintes instruções: Estas instruções geram a saída mostrada na Figura 18.59. Figura 18.59 Saída de Opção LIST para um Modelo AR com Lags em 1, 12 e 13 O MODELO Procedimento Listagem do Código de Programa Compilado como Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) il12 ZLAG12 (y - perdy) il13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y PRED. y - y Existem Variações no método dos mínimos quadrados condicionais, dependendo se as observações no início da série são usadas para aquecer o processo AR. Por padrão, o método de mínimos quadrados condicionais AR usa todas as observações e assume zeros para os retornos iniciais de termos autorregressivos. Usando a opção M, você pode solicitar que AR use o método de mínimos quadrados incondicionais (ULS) ou de máxima verossimilhança (ML). Por exemplo, as discussões sobre esses métodos são fornecidas na seção AR Condições iniciais. Usando a opção MCLS n, você pode solicitar que as primeiras n observações sejam usadas para calcular estimativas dos atrasos autorregressivos iniciais. Neste caso, a análise começa com a observação n 1. Por exemplo: Você pode usar a macro AR para aplicar um modelo autorregressivo à variável endógena, em vez de ao termo de erro, usando a opção TYPEV. Por exemplo, se você quiser adicionar os cinco atrasos anteriores de Y à equação no exemplo anterior, você pode usar AR para gerar os parâmetros e os retornos usando as seguintes instruções: As instruções anteriores geram a saída mostrada na Figura 18.60. Figura 18.60 Saída de opção LIST para um modelo AR de Y Este modelo prediz Y como uma combinação linear de X1, X2, uma interceptação e os valores de Y nos cinco períodos mais recentes. Autoresponder vetorial irrestrito Para modelar os termos de erro de um conjunto de equações como um processo autorregressivo de vetor, use a seguinte forma da macro AR após as equações: O valor processname é qualquer nome que você fornecer para AR usar para fazer nomes para o autorregressivo Parâmetros. Você pode usar a macro AR para modelar vários processos AR diferentes para diferentes conjuntos de equações usando diferentes nomes de processo para cada conjunto. O nome do processo garante que os nomes de variáveis ​​usados ​​são exclusivos. Use um valor processname curto para o processo se as estimativas de parâmetro forem gravadas em um conjunto de dados de saída. A macro AR tenta construir nomes de parâmetro menor ou igual a oito caracteres, mas isso é limitado pelo comprimento de processname. Que é usado como um prefixo para os nomes de parâmetro AR. O valor da lista de variáveis ​​é a lista de variáveis ​​endógenas para as equações. Por exemplo, suponha que erros para as equações Y1, Y2 e Y3 sejam gerados por um processo autorregressivo de vetor de segunda ordem. Você pode usar as seguintes instruções: que geram o seguinte para Y1 e código semelhante para Y2 e Y3: Somente o método de mínimos quadrados condicional (MCLS ou MCLS n) pode ser usado para processos vetoriais. Você também pode usar o mesmo formulário com restrições que a matriz de coeficientes seja 0 em defasagens selecionadas. Por exemplo, as seguintes afirmações aplicam um processo vetorial de terceira ordem aos erros de equação com todos os coeficientes no retardo 2 restrito a 0 e com os coeficientes nos retornos 1 e 3 sem restrições: Você pode modelar as três séries Y1Y3 como um processo autorregressivo de vetor Nas variáveis ​​em vez de nos erros usando a opção TYPEV. Se você deseja modelar Y1Y3 como uma função de valores passados ​​de Y1Y3 e algumas variáveis ​​exógenas ou constantes, você pode usar AR para gerar as declarações para os termos de atraso. Escreva uma equação para cada variável para a parte não autorregressiva do modelo e, em seguida, chame AR com a opção TYPEV. Por exemplo, a parte não autorregressiva do modelo pode ser uma função de variáveis ​​exógenas, ou pode ser parâmetros de interceptação. Se não houver componentes exógenos para o modelo de autorregressão vetorial, incluindo sem interceptações, então atribua zero a cada uma das variáveis. Deve haver uma atribuição para cada uma das variáveis ​​antes de AR é chamado. Este exemplo modela o vetor Y (Y1 Y2 Y3) como uma função linear apenas do seu valor nos dois períodos anteriores e um vetor de erro de ruído branco. O modelo tem 18 (3 3 3 3) parâmetros. Sintaxe da Macro AR Existem dois casos da sintaxe da macro AR. Quando as restrições em um processo AR vetorial não são necessárias, a sintaxe da macro AR tem a forma geral especifica um prefixo para AR a ser usado na construção de nomes de variáveis ​​necessários para definir o processo AR. Se o endolist não é especificado, a lista endógena padrão é nome. Que deve ser o nome da equação à qual o processo de erro AR deve ser aplicado. O valor de nome não pode exceder 32 caracteres. É a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Se for dado mais de um nome, é criado um processo vetorial sem restrições com os resíduos estruturais de todas as equações incluídas como regressores em cada uma das equações. Se não for especificado, o endolist predefinirá o nome. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada. Os métodos ULS e ML não são suportados para modelos AR de AR por AR. Especifica que o processo AR deve ser aplicado às próprias variáveis ​​endógenas em vez de aos resíduos estruturais das equações. Auto-regressão vetorial restrito Você pode controlar quais parâmetros são incluídos no processo, restringindo a 0 aqueles parâmetros que você não inclui. Primeiro, use AR com a opção DEFER para declarar a lista de variáveis ​​e definir a dimensão do processo. Em seguida, use chamadas AR adicionais para gerar termos para equações selecionadas com variáveis ​​selecionadas em intervalos selecionados. Por exemplo, as equações de erro produzidas são as seguintes: Este modelo estabelece que os erros para Y1 dependem dos erros de Y1 e Y2 (mas não Y3) nos dois intervalos 1 e 2, e que os erros para Y2 e Y3 dependem de Os erros anteriores para todas as três variáveis, mas apenas com atraso 1. AR Macro Sintaxe para AR Restrito AR Um uso alternativo de AR é permitido para impor restrições em um processo AR vetorial chamando AR várias vezes para especificar diferentes AR termos e defasagens para diferentes Equações. A primeira chamada tem a forma geral especifica um prefixo para AR para usar na construção de nomes de variáveis ​​necessárias para definir o vetor AR processo. Especifica a ordem do processo AR. Especifica a lista de equações às quais o processo AR deve ser aplicado. Especifica que AR não é para gerar o processo AR, mas é esperar por mais informações especificadas em chamadas AR posterior para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada AR devem ser aplicadas. Somente os nomes especificados no valor endolist da primeira chamada para o valor de nome podem aparecer na lista de equações na lista de eqlist. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. Somente nomes no endolist da primeira chamada para o valor de nome podem aparecer em varlist. Se não for especificado, varlist padrão para endolist. Especifica a lista de defasagens em que os termos AR devem ser adicionados. Os coeficientes dos termos em intervalos não listados são definidos como 0. Todos os atrasos listados devem ser menores ou iguais ao valor de nlag. E não deve haver duplicatas. Se não for especificado, o laglist assume todos os defasagens 1 a nlag. A macro MA A macro SAS MA gera instruções de programação para MODELO PROC para modelos de média móvel. A macro MA faz parte do software SASETS e não são necessárias opções especiais para utilizar a macro. O processo de erro de média móvel pode ser aplicado aos erros da equação estrutural. A sintaxe da macro MA é o mesmo que a macro AR, exceto que não há argumento TYPE. Quando você estiver usando as macros MA e AR combinadas, a macro MA deve seguir a macro AR. As seguintes instruções SASIML produzem um processo de erro ARMA (1, (1 3)) e salvam-no no conjunto de dados MADAT2. As seguintes instruções PROC MODEL são usadas para estimar os parâmetros deste modelo usando a estrutura de erro de máxima verossimilhança: As estimativas dos parâmetros produzidos por esta execução são mostradas na Figura 18.61. Figura 18.61 Estimativas de um processo ARMA (1, (1 3)) Existem dois casos da sintaxe para a macro MA. Quando as restrições em um processo de MA vetorial não são necessárias, a sintaxe da macro MA tem a forma geral especifica um prefixo para MA usar na construção de nomes de variáveis ​​necessárias para definir o processo MA e é o endolist padrão. É a ordem do processo MA. Especifica as equações às quais o processo MA deve ser aplicado. Se for dado mais de um nome, a estimativa CLS é usada para o processo vetorial. Especifica os atrasos em que os termos MA devem ser adicionados. Todos os atrasos listados devem ser menores ou iguais a nlag. E não deve haver duplicatas. Se não for especificado, o laglist padrão para todos os retornos 1 através de nag. Especifica o método de estimação a ser implementado. Valores válidos de M são CLS (estimativas de mínimos quadrados condicionais), ULS (estimativas de mínimos quadrados incondicionais) e ML (estimativas de máxima verossimilhança). MCLS é o padrão. Somente o MCLS é permitido quando mais de uma equação é especificada no endolist. MA Sintaxe de Macro para Movimentação-Média Restrita de Vetores Um uso alternativo de MA é permitido para impor restrições em um processo de MA de vetor chamando MA várias vezes para especificar diferentes termos de MA e defasagens para equações diferentes. A primeira chamada tem a forma geral especifica um prefixo para MA para usar na construção de nomes de variáveis ​​necessárias para definir o vetor MA processo. Especifica a ordem do processo MA. Especifica a lista de equações às quais o processo MA deve ser aplicado. Especifica que MA não é para gerar o processo de MA, mas é aguardar informações adicionais especificadas em chamadas de MA mais tarde para o mesmo valor de nome. As chamadas subsequentes têm a forma geral é a mesma que na primeira chamada. Especifica a lista de equações às quais as especificações nesta chamada MA devem ser aplicadas. Especifica a lista de equações cujos resíduos estruturais retardados devem ser incluídos como regressores nas equações em eqlist. specifies the list of lags at which the MA terms are to be added. Autoregressive Moving-Average Simulation (First Order) The Demonstration is set such that the same random series of points is used no matter how the constants and are varied. No entanto, quando o botão quotrandomizequot é pressionado, uma nova série aleatória será gerada e usada. Manter a série aleatória idêntica permite ao usuário ver exatamente os efeitos na série ARMA de mudanças nas duas constantes. A constante é limitada a (-1,1) porque a divergência da série ARMA resulta quando. A Demonstração destina-se apenas a um processo de primeira ordem. Os termos AR adicionais permitiriam a geração de séries mais complexas, enquanto que os termos MA adicionais aumentariam o alisamento. Para uma descrição detalhada dos processos ARMA, ver, por exemplo, G. Box, G. M. Jenkins e G. Reinsel, Análise de séries temporais: Previsão e Controlo. 3a ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. RELATED LINKSDocumentation dfilt. latticearma Most important is the label position in the diagram, which identifies where the format applies. As one example, look at the label LatticeProdFormat, which always follows a coefficient multiplication element in the signal flow. The label indicates that lattice coefficients leave the multiplication element with the word length and fraction length associated with product operations that include coefficients. From reviewing the table, you see that the LatticeProdFormat refers to the properties ProductWordLength. LatticeProdFracLength. and ProductMode that fully define the coefficient format after multiply (or product) operations. Properties In this table you see the properties associated with the autoregressive moving-average lattice implementation of dfilt objects. Note The table lists all the properties that a filter can have. Many of the properties are dynamic, meaning they exist only in response to the settings of other properties. You might not see all of the listed properties all the time. To view all the properties for a filter at any time, use where hd is a filter. For further information about the properties of this filter or any dfilt object, refer to Fixed-Point Filter Properties . Sets the mode used to respond to overflow conditions in fixed-point arithmetic. Choose from either saturate (limit the output to the largest positive or negative representable value) or wrap (set overflowing values to the nearest representable value using modular arithmetic). The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always saturates. Finally, products never overflow8212they maintain full precision. For the output from a product operation, this sets the fraction length used to interpret the data. This property becomes writable (you can change the value) when you set ProductMode to SpecifyPrecision . Determines how the filter handles the output of product operations. Choose from full precision ( FullPrecision ), or whether to keep the most significant bit ( KeepMSB ) or least significant bit ( KeepLSB ) in the result when you need to shorten the data words. For you to be able to set the precision (the fraction length) used by the output from the multiplies, you set ProductMode to SpecifyPrecision . Specifies the word length to use for multiplication operation results. This property becomes writable (you can change the value) when you set ProductMode to SpecifyPrecision . Specifies whether to reset the filter states and memory before each filtering operation. Lets you decide whether your filter retains states from previous filtering runs. False is the default setting. Sets the mode the filter uses to quantize numeric values when the values lie between representable values for the data format (word and fraction lengths). ceil - Round toward positive infinity. convergent - Round to the closest representable integer. Ties round to the nearest even stored integer. This is the least biased of the methods available in this software. fix - Round toward zero. floor - Round toward negative infinity. nearest - Round toward nearest. Ties round toward positive infinity. round - Round toward nearest. Ties round toward negative infinity for negative numbers, and toward positive infinity for positive numbers. The choice you make affects only the accumulator and output arithmetic. Coefficient and input arithmetic always round. Finally, products never overflow 8212 they maintain full precision. Specifies whether the filter uses signed or unsigned fixed-point coefficients. Only coefficients reflect this property setting. Select Your Country

No comments:

Post a Comment